Year projects were funded:

2020 - 2022

REAP - Revealing drug tolerant persister cells in cancer using contrast enhanced optical coherence and photoacoustic tomography

Description:

Funded by the Horizon 2020 framework (Call: Information and Communication Technologies, Disruptive Photonics Technology), the European consortium for REAP consists of 9 multidisciplinary teams from academia, research institute and industry spanning areas of expertise in biology, material science, oncology, chemistry, photonics, electrical and biomedical engineering. In order to benefit from external input, representatives from industry, academia, and health care institutes form an advisory board providing feedback on improvements and adjustments to the project.

Efforts will be intertwined to spearhead developments of microscopy and tomography multimodal imaging systems to provide a platform revealing drug tolerant persister cells in breast cancer in a preclinical setting.

The objective of this project is to reveal the drug tolerant persister cells (DTPs) in cancer using contrast enhanced optical coherence and photoacoustic tomography. Although people have gained unprecedented insight into the molecular mechanism of cancer, the drug resistance of cancer is still the Gordian knot for targeted therapy options, especially for cancers in advanced stages. The ringleader for this resistance can be traced to the DTPs, which can survive treatment. Detection of the DTPs, therefore, is of key importance for cancer treatment. However, due to the scarcity of the DTPs, tracking and analyzing them are extremely challenging with commercially available methods. In this proposal, we aim to reveal these DTPs by multimodal optical imaging. Firstly, a triple-modal two-photon laser scanning optical coherence photoacoustic microscopy (2PLS-OC-PAM) system will be built for in vitro measurements of cancer organoids. Secondly, a dual modality optical coherence photoacoustic tomography (OC-PAT) system will be implemented to visualize the tumors in vivo in a mouse model. A genetically modified mouse model of triple negative breast cancer will be dedicated in this study. As a contrast enhancement measure, nanoparticles will be designed and biofunctionalized to label the DTPs, enabling greatly increased sensitivity and specificity. To improve the image resolution, novel photoacoustic detectors will be developed based on microring technology. Furthermore, the image acquisition speed is expected to be increased by an order of magnitude by bringing in innovative laser sources to be developed in this proposal. Last but not least, real time data handling will be explored in this project as well as deep learning based automatic analysis algorithms. With the combined expertise in laser sources, detector technology, nanoparticle, and deep learning-based algorithms, this proposal has the potential to create completely new applications in imaging.

Scientific Director:
  • Kristen M. Meiburger (Tenure-track Assistant Professor (RTD/b))
  • Year: 2021-2024
    Project website: https://www.projectreap.eu/
    Other companies/universities involved in the project:
  • AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH - Austria
  • INNOLAS LASER GMBH - Germany
  • LAVISION BIOTEC GMBH - Germany
  • LIONIX INTERNATIONAL BV - Netherlands
  • MEDICAL UNIVERSITY OF VIENNA (MUW) - Austria - Coordinator
  • UNIVERSIDAD DE SANTIAGO DE COMPOSTELA - Spain
  • PICOPHOTONICS Oy - Finland
  • TAMPEREEN KORKEAKOULUSAATIO SR - Finland
  • ERC panels:
  • LS7_1 - Medical imaging for prevention, diagnosis and monitoring of diseases
  • LS4_12 - Cancer
  • PE2_12 - Optics, non-linear optics and nano-optics
  • Sustainable Development Goals (SDG):
  • SDG 3 - “Ensure healthy lives and promote well-being for all at all ages”
  • People involved:
  • Filippo Molinari (Full Professor)
  • Kristen M. Meiburger (Tenure-track Assistant Professor (RTD/b))
  • Massimo Salvi (Assistant Professor with time contract (RTD/a))
  • Giulia Rotunno (Ph.D. Student)

  • Discriminazione e quantificazione dei linfociti infiltranti il tumore nel carcinoma della mammella

    Description:

    La risposta immunologica ai neoantigeni del cancro rappresenta un importante discriminatore della prognosi in molte malattie neoplastiche. L’equivalente morfologico di questa risposta è rappresentato dall’infiltrazione del bordo del tumore da parte dei linfociti e di altre cellule immunologiche. La valutazione quantitativa di questa reazione è un parametro importante che dovrebbe essere incluso nel rapporto di patologia di molti tipi di cancro inclusi melanoma, carcinoma del colon-retto e della mammella. In particolare, i linfociti infiltranti il tumore (TIL) sono stati validati come parametro prognostico e predittivo della risposta chemioterapica adiuvante nel carcinoma mammario HER2-amplificato e triplo negativo.Recentemente, nello sforzo di aumentare la precisione e l’accuratezza di questo importante parametro prognostico e predittivo, sono state pubblicate linee guida per la standardizzazione della quantificazione delle TIL nel carcinoma mammario e altri tumori solidi. Nonostante ciò, la riproducibilità intra- e inter-osservatore manuale del conteggio delle TIL rimane non ottimale, limitando la sua applicazione in predizione e prognosticazione.L’applicazione del conteggio automatico di TIL mediante algoritmi potrebbe migliorare la sua affidabilità aumentando la precisione, l’accuratezza e, usando diapositive digitali, estendere in modo efficiente la quantificazione dei TIL all’intero bordo del tumore.In questo progetto verrà sviluppato e implementato un sistema automatico per la identificazione e la quantificazione dei TILs. Il sistema, corredato di interfaccia utente piattaforma-indipendente, verrà messo liberamente a disposizione dei laboratori di anatomia patologica della regione Piemonte e consentirà una misurazione precisa e riproducibile tra i vari centri della misurazione dei TILs.

    Scientific Director:
  • Filippo Molinari (Full Professor)
  • Year: 2020-2022
    Other companies/universities involved in the project:
  • AZIENDA SANITARIA LOCALE CN2 ALBA-BRA - ALBA (CN)
  • ERC panels:
  • LS7_1 - Medical imaging for prevention, diagnosis and monitoring of diseases
  • PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
  • Sustainable Development Goals (SDG):
  • SDG 3 - “Ensure healthy lives and promote well-being for all at all ages”
  • People involved:
  • Filippo Molinari (Full Professor)
  • Massimo Salvi (Assistant Professor with time contract (RTD/a))

  • InSiDe - Integrated silicon photonics for Cardiovascular Disease monitoring

    Description:

    The rationale for Medtronic and partners to propose the InSiDe project is the unmet need of the medical community for reliable, non-invasive, cheap and easy-to-use tools able to identify and characterize different stages of cardiovascular diseases. Solving this need ensures the early adoption of the appropriate therapies, dramatically reduces healthcare costs and importantly, improves patient outcome. In fact, monitoring arterial stiffness by measurement of the aortic pulse wave velocity has been demonstrated to be a crucial need for the management of hypertensive patients and it is recommended in the European Society of Cardiology Guidelines.
    In addition, the early identification of arterial stenosis and cardiac contraction abnormalities can be used to drive earlier therapy adoption and to improve patient’s response in cardiac (valvular) disease.
    Building on the realizations of the successful CARDIS (H2020-ICT-644798) project, the objective of InSiDe is to accelerate access to a new diagnostic device, based on silicon photonics technology, able to monitor cardiovascular diseases and to prove its efficacy in driving a timely therapy institution and its related follow-up.
    We will:
    -Develop an efficient miniaturized laser Doppler interferometer supported by a manufacturable package with integrated imaging optics and by electronics for control of the laser interferometer with onboard near-real time signal processing
    capability.
    -Develop algorithms for translation of the interferometer signals to beat-to-beat measurement results relevant for monitoring and diagnosis of selected cardiovascular parameters.
    -Prove the device efficacy in multiple clinical feasibility studies inside and outside the consortium.
    -Outline a path to industrialization and manufacturability.
    In this way InSiDe will realize a low-cost handheld, robust diagnostic tool, manufacturable in high-volumes. The diagnostic tool gives immediate results for physician’s interpretation.

    Scientific Director:
  • Filippo Molinari (Full Professor)
  • Year: 2020-2023
    Other companies/universities involved in the project:
  • ARGOTECH AS - Czechia
  • FUNDICO BVBA - Belgium
  • INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE - France
  • INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM - Belgium - Coordinator
  • MEDTRONIC BAKKEN RESEARCH CENTER B.V. - Netherlands
  • MICROCHIP TECHNOLOGY CALDICOT LIMITED - United Kingdom
  • UNIVERSITEIT GENT - Belgium
  • UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK - Ireland
  • UNIVERSITEIT MAASTRICHT - Netherlands
  • ERC panels:
  • LS7_2 - Medical technologies and tools (including genetic tools and biomarkers) for prevention, diagnosis, monitoring and treatment of diseases
  • PE7_7 - Signal processing
  • PE2_12 - Optics, non-linear optics and nano-optics
  • Sustainable Development Goals (SDG):
  • SDG 3 - “Ensure healthy lives and promote well-being for all at all ages”
  • People involved:
  • Filippo Molinari (Full Professor)
  • Silvia Seoni (Research Assistant)

  • Schiera attiva indossabile multi-sensore per la prevenzione dello scompenso cardiaco

    Description:

    La tecnologia consiste in una schiera bidimensionale di microfoni integrati in una struttura flessibile, contenente anche elettrodi per il prelievo del segnale elettrocardiografico ed un sensore magneto-inerziale. Tale schiera è destinata ad essere posizionata sull’emitorace sinistro di un soggetto cardiopatico e, collegata ad un dispositivo che consente la registrazione dei segnali elettrocardiografici, sonocardiografici e di quelli provenienti dal sensore magneto-inerziale, renderà possibile il follow-up domiciliare di pazienti cardiopatici esposti al rischio di scompenso cardiaco, al fine di evitare la fase acuta della malattia e la conseguente ospedalizzazione del paziente. Per dare un’idea delle possibili ricadute commerciali, si consideri che un quarantenne di oggi ha il 21% di probabilità di sviluppare una forma di scompenso cardiaco durante il resto della vita, probabilità che sale al 28% nel caso sia iperteso.La tecnologia proposta ha come funzione la registrazione simultanea di segnali sonocardiografici e di una derivazione elettrocardiografica, senza che sia richiesta la presenza di un operatore sanitario. Tali segnali consentiranno di ottenere una misura affidabile delle latenze delle quattro componenti dei toni cardiaci rispetto al picco dell’onda R, per ottenere informazioni sull’attività valvolare e sull’accoppiamento elettromeccanico del cuore. La registrazione simultanea di alcune decine di segnali sonocardiografici garantirà la possibilità di posizionare la struttura planare in autonomia – potrà essere posizionata dal paziente o da un caregiver, senza intervento di un sanitario – così da consentire l’utilizzo del dispositivo su base giornaliera ed in un contesto domiciliare. Nel corso dell’attività, per passare da TRL 3 – livello attuale della tecnologia – ad un livello intermedio tra il 5 ed il 6 (per arrivare al 6 mancherà la costruzione di un prototipo del sistema microcontrollato da collegare alla schiera per realizzare il dispositivo finale direttamente utilizzabile dall’utente, ma il prototipo sarà già stato provato in condizioni realistiche), saranno sviluppate due versioni differenti della schiera bidimensionale ed i necessari algoritmi di elaborazione del segnale.

    Scientific Director:
  • Marco Knaflitz (Full Professor)
  • Year: 2020-2021
    ERC panels:
  • LS4_10 - The cardiovascular system and cardiovascular diseases
  • LS7_2 - Medical technologies and tools (including genetic tools and biomarkers) for prevention, diagnosis, monitoring and treatment of diseases
  • Sustainable Development Goals (SDG):
  • SDG 3 - “Ensure healthy lives and promote well-being for all at all ages”
  • People involved:
  • Marco Knaflitz (Full Professor)
  • Noemi Giordano (Ph.D. Student)
  • Gabriella Balestra (Confirmed Assistant Professor)
  • Samanta Rosati (Assistant Professor with time contract (RTD/b))

  • Sistema per la normalizzazione della colorazione di preparati istologici in anatomia patologica

    Description:

    La diagnosi di immagini istopatologiche è basata sull’analisi visiva da parte di un patologo di piccole porzioni di tessuto. Per poter analizzare il tessuto al microscopio, i campioni istologici seguono uno specifico protocollo: devono essere tagliati in strisce sottilissime, così da poter essere osservati in controluce, e devono essere colorati con specifici reagenti, in modo tale da rendere riconoscibili le varie strutture cellulari al loro interno.A causa della manualità del processo descritto, il tessuto può assumere diverse intensità di colorazione a seconda: i) del grado di deterioramento e tempo di esposizione al colorante; ii) dell’abilità del tecnico che effettua il taglio e sezionamento del campione. Questa variabilità nella colorazione del preparato istologico (es: intensità troppo elevate/deboli, basso contrasto tra strutture cellulari di interesse, ecc.) va inevitabilmente ad influenzare il processo diagnostico del patologo sia in termini di accuratezza che di tempo. Allo stesso modo, immagini digitali che presentano un’elevata variabilità nella colorazione possono diminuire le performance dei sistemi di diagnosi assistita da computer (CAD).In questo contesto, il processo di normalizzazione della colorazione istologica ha dimostrato di essere un potente strumento per far fronte a questo problema, in quanto permette di standardizzare la colorazione di un’immagine sorgente rispetto a quella di un’immagine di riferimento scelta dal patologo in base alla propria esperienza/abitudine o al tessuto/patologia che intende analizzare.La tecnologia che si intende sviluppare consiste in un software completamente automatico per la normalizzazione della colorazione di preparati istologici. Attraverso questo sistema di normalizzazione, sarà possibile ricolorare digitalmente, automaticamente ed in pochi secondi il tessuto. Avendo a disposizione dei tessuti “normalizzati” sarà possibile: i) aumentare la velocità e l’accuratezza della diagnosi; ii) eliminare ritardi dovute a colorazioni di ulteriori preparati istologici; iii) permettere l’utilizzo di software automatici per analisi di preparati istologici, ad oggi con funzionalità limitate a causa di tessuti con colorazioni non ottimali.

    Scientific Director:
  • Filippo Molinari (Full Professor)
  • Year: 2020-2021
    ERC panels:
  • PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
  • Sustainable Development Goals (SDG):
  • SDG 3 - “Ensure healthy lives and promote well-being for all at all ages”
  • People involved:
  • Filippo Molinari (Full Professor)
  • Massimo Salvi (Assistant Professor with time contract (RTD/a))
  • Nicola Michielli (Research Assistant)

  • 2015 - 2019

    1999 - 2014

    Supporto scientifico alla redazione del Master Plan del progetto “Città della Salute e della Scienza di Torino”

    Description:

    Ricerca Commerciale. Consulenze e Contratti di ricerca.

    Scientific Director:
  • Gabriella Balestra (Confirmed Assistant Professor)
  • Marco Knaflitz (Full Professor)
  • Year: 2011
    Other companies/universities involved in the project:
  • AGENZIA REGIONALE PER I SERVIZI SANITARI - A.RE.S.S.
  • People involved:
  • Gabriella Balestra (Confirmed Assistant Professor)
  • Marco Knaflitz (Full Professor)

  • Identificazione di un sistema evoluto di classificazione e codifica delle apparecchiature biomediche nonché la definizione di modelli per l'implementazione di un sistema di supporto alla pianificazione e gestione delle tecnologie biomediche

    Description:

    Ricerca Commerciale. Consulenze e Contratti di ricerca.

    Scientific Director:
  • Gabriella Balestra (Confirmed Assistant Professor)
  • Year: 2007-2008
    Other companies/universities involved in the project:
  • POLIEDRA SANITÀ S.R.L.
  • People involved:
  • Gabriella Balestra (Confirmed Assistant Professor)

  • Modelli sostenibili di servizi di ingegneria clinica, linee guida regionali per le procedure base di gestione delle tecnologie sanitarie, health technology assessment

    Description:

    Ricerca Commerciale. Consulenze e Contratti di ricerca.

    Scientific Director:
  • Marco Knaflitz (Full Professor)
  • Year: 2007
    Other companies/universities involved in the project:
  • AGENZIA REGIONALE PER I SERVIZI SANITARI - A.RE.S.S.
  • People involved:
  • Gabriella Balestra (Confirmed Assistant Professor)
  • Marco Knaflitz (Full Professor)

  • Sistema di controllo telematico del paziente per chemioterapia a domicilio

    Description:

    Ricerca Regionale (non commerciale). Progetti di Ricerca su Fondi Strutturali e Nazionali.

    Scientific Director:
  • Marco Knaflitz (Full Professor)
  • Year: 2006-2009
    Other companies/universities involved in the project:
  • Università degli Studi di Torino
  • Regione Piemonte
  • People involved:
  • Marco Knaflitz (Full Professor)
  • Gabriella Balestra (Confirmed Assistant Professor)
  • Samanta Rosati (Assistant Professor with time contract (RTD/b))